mgwr Documentation
Release 2.0.1

pysal developers

Jan 05, 2019

Contents:

1 Installation 3
1.1 Installing released VETSION o v v i i v i e e e e e e e e e e e e e e 3

1.2 Installing development Version o i 3

2 API reference 5
2.1 GWR Model Estimation and Inference 5
21,1 mgwr.gwr.GWR oo e 5

2.1.2 mgwrgwr.GWRResults L 9

2.1.3 mgwr.gwr.GWRResultsLite 12

2.2 MGWR Estimation and Inference L e 12
22,1 mgwrgwr.MGWR e e 12

222 mgwrgwrMGWRResults oL 15

2.3 Utlity Functions L e e 19
2.3.1 Kernel Specificationo e 19

2.3.2 Bandwidth Selection L 20

233 Visualization e e e e e e e e 24

3 References 27
Bibliography 29

mgwr Documentation, Release 2.0.1

mgwr is a Python implementation of multiscale geographically weighted regression for investigating process spa-
tial heterogeneity and scale. It incorporates the widely used approach to modeling process spatial heterogeneity -
Geographically Weighted Regression (GWR) as well as the newly proposed approach - Multiscale GWR (MGWR)
which relaxes the assumption that all of the processes being modeled operate at the same spatial scale. Inferences are
available for both approaches.

Contents: 1

mgwr Documentation, Release 2.0.1

2 Contents:

CHAPTER 1

Installation

mgwr supports python 3.5 and 3.6 only. Please make sure that you are operating in a python 3 environment.

1.1 Installing released version

mgwr is available on the Python Package Index. Therefore, you can either install directly with pip from the command
line:

’pip install -U mgwr ‘

or download the source distribution (.tar.gz) and decompress it to your selected destination. Open a command shell
and navigate to the decompressed folder. Type:

’pip install . ‘

1.2 Installing development version

Potentially, you might want to use the newest features in the development version of mgwr on github - pysal/mgwr
while have not been incorporated in the Pypi released version. You can achieve that by installing pysal/mgwr by
running the following from a command shell:

pip install https://github.com/pysal/mgwr/archive/master.zip

You can also fork the pysal/mgwr repo and create a local clone of your fork. By making changes to your local clone
and submitting a pull request to pysal/mgwr, you can contribute to the mgwr development.

https://docs.python.org/3.5/
https://docs.python.org/3.6/
https://pypi.org/project/mgwr/
https://github.com/pysal/mgwr
https://github.com/pysal/mgwr
https://help.github.com/articles/fork-a-repo/
https://github.com/pysal/mgwr
https://github.com/pysal/mgwr

mgwr Documentation, Release 2.0.1

4 Chapter 1. Installation

CHAPTER 2

API reference

2.1 GWR Model Estimation and Inference

mgwr.gwr . GWR(coords, y, X, bw[, family, ...]) Geographically weighted regression.
mgwr.gwr.GWRResults(model, params, predy, S, Basic class including common properties for all GWR
CCT) regression models

mgwr.gwr.GWRResultsLite(model, resid, influ) Lightweight GWR that computes the minimum diag-
nostics needed for bandwidth selection

2.1.1 mgwr.gwr.GWR

class mgwr.gwr.GWR (coords, vy, X, bw, family=<spglm.family.Gaussian object>, offset=None,
sigma2_vIl=True, kernel="bisquare’, fixed=False, constant=True, dmat=None,

sorted_dmat=None, spherical=False)
Geographically weighted regression. Can currently estimate Gaussian, Poisson, and logistic models(built on a

GLM framework). GWR object prepares model input. Fit method performs estimation and returns a GWRRe-
sults object.

Parameters

coords [array-like] n*2, collection of n sets of (x,y) coordinates of observatons; also used as
calibration locations is “points’ is set to None

y [array] n*1, dependent variable
X [array] n*k, independent variable, exlcuding the constant

bw [scalar] bandwidth value consisting of either a distance or N nearest neighbors; user speci-
fied or obtained using Sel_BW

family [family object] underlying probability model; provides distribution-specific calculations

offset [array] n*1, the offset variable at the ith location. For Poisson model this term is often
the size of the population at risk or the expected size of the outcome in spatial epidemiology
Default is None where Ni becomes 1.0 for all locations; only for Poisson models

mgwr Documentation, Release 2.0.1

sigma2_v1 [boolean] specify form of corrected denominator of sigma squared to use for model
diagnostics; Acceptable options are:

“True’: n-tr(S) (defualt) ‘False’: n-2(tr(S)+tr(S’S))

kernel [string] type of kernel function used to weight observations; available options: ‘gaus-
sian’ ‘bisquare’ ‘exponential’

fixed [boolean] True for distance based kernel function and False for adaptive (nearest neighbor)
kernel function (default)

constant [boolean] True to include intercept (default) in model and False to exclude intercept.

dmat [array] n*n, distance matrix between calibration locations used to compute weight matrix.
Defaults to None and is primarily for avoiding duplicate computation during bandwidth
selection.

sorted_dmat [array] n*n, sorted distance matrix between calibration locations used to compute
weight matrix. Defaults to None and is primarily for avoiding duplicate computation during
bandwidth selection.

spherical [boolean] True for shperical coordinates (long-lat), False for projected coordinates
(defalut).

Examples

#basic model calibration

>>> import libpysal as ps

>>> from mgwr.gwr import GWR

>>> data = ps.io.open(ps.examples.get_path('GData_utm.csv'))
>>> coords = list(zip(data.by_col('X'), data.by_col('Y")))

>>> y = np.array(data.by_col ('PctBach')) .reshape((-1,1))

>>> rural = np.array(data.by_col('PctRural')) .reshape((-1,1))

>>> pov = np.array(data.by_col('PctPov')) .reshape((-1,1))

>>> african_amer = np.array(data.by_col ('PctBlack')) .reshape((-1,1))
>>> X = np.hstack([rural, pov, african_amer])

>>> model = GWR (coords, y, X, bw=90.000, fixed=False, kernel='bisquare')
>>> results = model.fit ()

>>> print (results.params.shape)

(159, 4)

#predict at unsampled locations

>>> index = np.arange (len(y))

>>> test = index[-10:]

>>> X _test = X[test]

>>> coords_test = np.array(coords) [test]

>>> model = GWR(coords, y, X, bw=94, fixed=False, kernel='bisquare')

>>> results = model.predict (coords_test, X_test)
>>> print (results.params.shape)
(10, 4)

Attributes
coords [array-like] n*2, collection of n sets of (x,y) coordinates used for calibration locations
y [array] n*1, dependent variable

X [array] n*k, independent variable, exlcuding the constant

6 Chapter 2. API reference

mgwr Documentation, Release 2.0.1

bw [scalar] bandwidth value consisting of either a distance or N nearest neighbors; user speci-
fied or obtained using Sel_BW

family [family object] underlying probability model; provides distribution-specific calculations

offset [array] n*1, the offset variable at the ith location. For Poisson model this term is often
the size of the population at risk or the expected size of the outcome in spatial epidemiology
Default is None where Ni becomes 1.0 for all locations

sigma2_v1l [boolean] specify form of corrected denominator of sigma squared to use for model
diagnostics; Acceptable options are:

“True’: n-tr(S) (defualt) ‘False’: n-2(tr(S)+tr(S’°S))

kernel [string] type of kernel function used to weight observations; available options: ‘gaus-
sian’ ‘bisquare’ ‘exponential’

fixed [boolean] True for distance based kernel function and False for adaptive (nearest neighbor)
kernel function (default)

constant [boolean] True to include intercept (default) in model and False to exclude intercept

dmat [array] n*n, distance matrix between calibration locations used to compute weight matrix.
Defaults to None and is primarily for avoiding duplicate computation during bandwidth
selection.

sorted_dmat [array] n*n, sorted distance matrix between calibration locations used to compute
weight matrix. Defaults to None and is primarily for avoiding duplicate computation during
bandwidth selection.

spherical [boolean] True for shperical coordinates (long-lat), False for projected coordinates
(defalut).

n [integer] number of observations

k [integer] number of independent variables

mean_y [float] mean of y

std_y [float] standard deviation of y

fit_params [dict] parameters passed into fit method to define estimation routine

W [array] n*n, spatial weights matrix for weighting all observations from each calibration point

points [array-like] n*2, collection of n sets of (X,y) coordinates used for calibration locations
instead of all observations; defaults to None unles specified in predict method

P [array] n*k, independent variables used to make prediction; exlcuding the constant; default to
None unless specified in predict method

exog_scale [scalar] estimated scale using sampled locations; defualt is None unless specified in
predict method

exog_resid [array-like] estimated residuals using sampled locations; defualt is None unless
specified in predict method

Methods

£1t([ini_params, tol, max_iter, solve, ...]) Method that fits a model with a particular estimation
routine.

Continued on next page

2.1. GWR Model Estimation and Inference 7

mgwr Documentation, Release 2.0.1

Table 2 — continued from previous page
predict(points, P[, exog_scale, exog_resid,...]) = Method that predicts values of the dependent vari-
able at un-sampled locations

mgwr.gwr.GWR
GWR. £it (ini_params=None, tol=1e-05, max_iter=20, solve="iwls’, searching=False)
Method that fits a model with a particular estimation routine.
Parameters

ini_betas [array, optional] k*1, initial coefficient values, including constant. Default is
None, which calculates initial values during estimation.

tol: float, optional Tolerence for estimation convergence. Default is 1.0e-5.

max_iter [integer, optional] Maximum number of iterations if convergence not achieved.
Default is 20.

solve [string, optional] Technique to solve MLE equations. Default is ‘iwls’, meaning itera-
tively (re)weighted least squares.

searching [bool, optional] Whether to estimate a lightweight GWR that computes the mini-
mum diagnostics needed for bandwidth selection (could speed up bandwidth selection for
GWR) or to estimate a full GWR. Default is False.

Returns

: If searching=True, return a GWRResult instance; otherwise, return a GWRResultLite in-
stance.

mgwr.gwr.GWR
GWR.predict (points, P, exog_scale=None, exog_resid=None, fit_params={})
Method that predicts values of the dependent variable at un-sampled locations
Parameters

points [array-like] n*2, collection of n sets of (X,y) coordinates used for calibration predic-
tion locations

P [array] n*¥k, independent variables used to make prediction; exlcuding the constant

exog_scale [scalar] estimated scale using sampled locations; defualt is None which esti-
mates a model using points from “coords”

exog_resid [array-like] estimated residuals using sampled locations; defualt is None which
estimates a model using points from “coords”; if given it must be n*1 where n is the length
of coords

fit_params [dict] key-value pairs of parameters that will be passed into fit method to define
estimation routine; see fit method for more details

df _model
df_resid

__init__ (coords, y, X, bw, family=<spglm.family. Gaussian object>, offset=None, sigma2_vI=True,
kernel="bisquare’, fixed=False, constant=True, dmat=None, sorted_dmat=None, spheri-

cal=False)
Initialize class

8 Chapter 2. API reference

mgwr Documentation, Release 2.0.1

2.1.2 mgwr.gwr.GWRResults
class mgwr.gwr.GWRResults (model, params, predy, S, CCT, w=None)
Basic class including common properties for all GWR regression models
Parameters
model [GWR object] pointer to GWR object with estimation parameters
params [array] n*k, estimated coefficients
predy [array] n*1, predicted y values
S [array] n*n, hat matrix
CCT [array] n*k, scaled variance-covariance matrix
w [array] n*1, final weight used for iteratively re-weighted least sqaures; default is None
Attributes
model [GWR Object] points to GWR object for which parameters have been estimated
params [array] n*k, parameter estimates
predy [array] n*1, predicted value of y
y [array] n*1, dependent variable
X [array] n*k, independent variable, including constant
family [family object] underlying probability model; provides distribution-specific calculations
n [integer] number of observations
k [integer] number of independent variables
df_model [integer] model degrees of freedom
df_resid [integer] residual degrees of freedom

offset [array] n*1, the offset variable at the ith location. For Poisson model this term is often the
size of the population at risk or the expected size of the outcome in spatial epidemiology;
Default is None where Ni becomes 1.0 for all locations

scale [float] sigma squared used for subsequent computations

w [array] n*1, final weights from iteratively re-weighted least sqaures routine
resid_response [array] n*1, residuals of the repsonse

resid_ss [scalar] residual sum of sqaures

W [array] n*n; spatial weights for each observation from each calibration point
S [array] n*n, hat matrix

CCT [array] n*k, scaled variance-covariance matrix

ENP [scalar] effective number of parameters

tr_ S [float] trace of S (hat) matrix

tr_STS [float] trace of STS matrix

y_bar [array] weighted mean of y

TSS [array] geographically weighted total sum of squares

RSS [array] geographically weighted residual sum of squares

2.1. GWR Model Estimation and Inference 9

mgwr Documentation, Release 2.0.1

R2 [float] R-squared for the entire model (1- RSS/TSS)
aic [float] Akaike information criterion

aicc [float] corrected Akaike information criterion to account to account for model complexity
(smaller bandwidths)

bic [float] Bayesian information criterio

localR2 [array] local R square

sigma2 [float] residual variance

std_res [array] standardized residuals

bse [array] standard errors of Betas

influ [array] Influence: leading diagonal of S Matrix

CooksD [array] n*1, Cook’s D

tvalues [array] Return the t-statistic for a given parameter estimate.

adj_alpha [array] Corrected alpha (critical) values to account for multiple testing during
hypothesis testing.

deviance [array] n*1, local model deviance for each calibration point
resid_deviance [array] n*1, local sum of residual deviance for each calibration point

IIf [scalar] log-likelihood of the full model; see pysal.contrib.glm.family for damily-sepcific
log-likelihoods

pDev [float] Local percentage of deviance accounted for.
mu [array] n*, flat one dimensional array of predicted mean response value from estimator
fit_params [dict] parameters passed into fit method to define estimation routine

predictions [array] p*1, predicted values generated by calling the GWR predict method to pre-
dict dependent variable at unsampled points ()

Methods
ENP() effective number of parameters
RSS() geographically weighted residual sum of squares
TSS() geographically weighted total sum of squares

adj_alpha()

Corrected alpha (critical) values to account for mul-
tiple testing during hypothesis testing.

bse()

standard errors of Betas

conf_int()

Returns the confidence interval of the fitted parame-
ters.

cooksD()

Influence: leading diagonal of S Matrix

cov_params(cov[, exog_scale])

Returns scaled covariance parameters

critical_tval([alpha])

Utility function to derive the critial t-value based on
given alpha that are needed for hypothesis testing

filter_tvals([critical_t, alpha])

Utility function to set tvalues with an absolute value
smaller than the absolute value of the alpha (critical)
value to 0.

influ()

Influence: leading diagonal of S Matrix

Continued on next page

10

Chapter 2. API reference

mgwr Documentation, Release 2.0.1

Table 3 — continued from previous page

localR2()

local R square

local_collinearity()

Computes several indicators of multicollinearity
within a geographically weighted design matrix, in-
cluding:

pDev()

Local percentage of deviance accounted for.

sigma2()

residual variance

spatial_variability(selector|, n_iters, Method to compute a Monte Carlo test of spatial
seed]) variability for each estimated coefficient surface.
std_res() standardized residuals
summary() Print out GWR summary
tr_S() trace of S (hat) matrix
tr_STS() trace of STS matrix
tvalues() Return the t-statistic for a given parameter estimate.
use_t() bool(x) -> bool
y_bar() weighted mean of y

D2

R2

adj_D2

adj_pseudoR2

aic

aicc

bic

deviance

df _model

df _resid

initialize

1If

IInull

normalized_cov_params

null

null_deviance

pearson_chi2

predictions

pseudoR2

pvalues

resid_anscombe

resid_deviance

resid_pearson

resid_response

resid_ss

resid_working

scale

__init__ (model, params, predy, S, CCT, w=None)
Initialize self. See help(type(self)) for accurate signature.

2.1. GWR Model Estimation and Inference 11

mgwr Documentation, Release 2.0.1

2.1.3 mgwr.gwr.GWRResultsLite
class mgwr.gwr.GWRResultsLite (model, resid, influ)
Lightweight GWR that computes the minimum diagnostics needed for bandwidth selection
Parameters
model [GWR object] pointer to GWR object with estimation parameters
resid [array] n*1, residuals of the repsonse
influ [array] n*1, leading diagonal of S matrix
Attributes
tr_S [float] trace of S (hat) matrix

IIf [scalar] log-likelihood of the full model; see pysal.contrib.glm.family for damily-sepcific
log-likelihoods

mu [array] n*, flat one dimensional array of predicted mean response value from estimator

resid_ss [scalar] residual sum of sqaures

Methods

113§

mu
resid_ss
tr_S

__init__ (model, resid, influ)
Initialize self. See help(type(self)) for accurate signature.

2.2 MGWR Estimation and Inference

mgwr . gwr . MGWR(coords, y, X, selector], ...]) Multiscale GWR estimation and inference.
mgwr.gwr.MGWRResult s(model, params, predy, Class including common properties for a MGWR
L) model.

2.2.1 mgwr.gwr.MGWR

class mgwr.gwr .MGWR (coords, y, X, selector, sigma2_vI=True, kernel="bisquare’, fixed=False, con-

stant=True, dmat=None, sorted_dmat=None, spherical=False)
Multiscale GWR estimation and inference.

Parameters

coords [array-like] n*2, collection of n sets of (x,y) coordinates of observatons; also used as
calibration locations is ‘points’ is set to None

y [array] n*1, dependent variable
X [array] n*k, independent variable, exlcuding the constant

selector [sel_bw object] valid sel_bw object that has successfully called the “search” method.

12 Chapter 2. API reference

mgwr Documentation, Release 2.0.1

This parameter passes on information from GAM model estimation including optimal band-
widths.

family [family object] underlying probability model; provides distribution-specific calculations

sigma2_v1 [boolean] specify form of corrected denominator of sigma squared to use for model
diagnostics; Acceptable options are:

‘True’: n-tr(S) (defualt) ‘False’: n-2(tr(S)+tr(S’S))

kernel [string] type of kernel function used to weight observations; available options: ‘gaus-
sian’ ‘bisquare’ ‘exponential’

fixed [boolean] True for distance based kernel function and False for adaptive (nearest neighbor)
kernel function (default)

constant [boolean] True to include intercept (default) in model and False to exclude intercept.

dmat [array] n*n, distance matrix between calibration locations used to compute weight matrix.
Defaults to None and is primarily for avoiding duplicate computation during bandwidth
selection.

sorted_dmat [array] n*n, sorted distance matrix between calibration locations used to compute
weight matrix. Defaults to None and is primarily for avoiding duplicate computation during
bandwidth selection.

spherical [boolean] True for shperical coordinates (long-lat), False for projected coordinates
(defalut).

Examples

#basic model calibration

[92.0,

>>> gelector
>>> selector.search (multi_bw _min=[2])

>>> import libpysal as ps

>>> from mgwr.gwr import MGWR

>>> from mgwr.sel bw import Sel BW

>>> data = ps.io.open(ps.examples.get_path('GDhata_utm.csv'))
>>> coords = list(zip(data.by_col('X"), data.by_col('Y")))

>>> y = np.array(data.by_col ('PctBach')) .reshape((-1,1))

>>> rural = np.array(data.by_col('PctRural')) .reshape((-1,1))

>>> fb = np.array(data.by_col ('"PctFB')) .reshape((-1,1))

>>> african_amer = np.array(data.by_col ('PctBlack')) .reshape((-1,1))
>>> X = np.hstack ([fb, african_amer, rurall)

>>> X = (X - X.mean (axis=0)) / X.std(axis=0)

>>> y

= (y - y.mean (axis=0)) / y.std(axis=0)
= Sel_BW(coords, y, X, multi=True)

101.0, 136.0, 158.0]

>>> model = MGWR (coords, y, X, selector, fixed=False, kernel='bisquare',6K sigma2_
—v1=True)

>>> results = model.fit ()

>>> print (results.params.shape)

(159, 4)
Attributes
coords [array-like] n*2, collection of n sets of (x,y) coordinates of observatons; also used as
calibration locations is ‘points’ is set to None
y [array] n*1, dependent variable
2.2. MGWR Estimation and Inference 13

mgwr Documentation, Release 2.0.1

X [array] n*k, independent variable, exlcuding the constant

selector [sel_bw object] valid sel_bw object that has successfully called the “search” method.
This parameter passes on information from GAM model estimation including optimal band-
widths.

bw [array-like] collection of bandwidth values consisting of either a distance or N nearest neigh-
bors; user specified or obtained using Sel_BW with fb=True. Order of values should the
same as the order of columns associated with X

family [family object] underlying probability model; provides distribution-specific calculations

sigma2_v1 [boolean] specify form of corrected denominator of sigma squared to use for model
diagnostics; Acceptable options are:

‘True’: n-tr(S) (defualt) ‘False’: n-2(tr(S)+tr(S’S))

kernel [string] type of kernel function used to weight observations; available options: ‘gaus-
sian’ ‘bisquare’ ‘exponential’

fixed [boolean] True for distance based kernel function and False for adaptive (nearest neighbor)
kernel function (default)

constant [boolean] True to include intercept (default) in model and False to exclude intercept.

dmat [array] n*n, distance matrix between calibration locations used to compute weight matrix.
Defaults to None and is primarily for avoiding duplicate computation during bandwidth
selection.

sorted_dmat [array] n*n, sorted distance matrix between calibration locations used to compute
weight matrix. Defaults to None and is primarily for avoiding duplicate computation during
bandwidth selection.

spherical [boolean] True for shperical coordinates (long-lat), False for projected coordinates
(defalut).

n [integer] number of observations

k [integer] number of independent variables

mean_y [float] mean of y

std_y [float] standard deviation of y

fit_params [dict] parameters passed into fit method to define estimation routine

W [array-like] list of n*n arrays, spatial weights matrices for weighting all observations from
each calibration point: one for each covariate (k)

Methods
fit() Method that extracts information from Sel_BW (se-
lector) object and prepares GAM estimation results
for MGWRResults object.
predict() Not implemented.
mgwr.gwr.MGWR
MGWR. fit ()

Method that extracts information from Sel_BW (selector) object and prepares GAM estimation results for
MGWRResults object.

14 Chapter 2. API reference

mgwr Documentation, Release 2.0.1

mgwr.gwr.MGWR

MGWR .predict ()
Not implemented.

df _model
df_resid

__init__ (coords, y, X, selector, sigma2_vI=True, kernel="bisquare’, fixed=False, constant=True,

dmat=None, sorted_dmat=None, spherical=False)
Initialize class

2.2.2 mgwr.gwr.MGWRResults

class mgwr.gwr .MGWRResults (model, params, predy, S, CCT, R, w)
Class including common properties for a MGWR model.

Parameters

model [MGWR object] pointer to MGWR object with estimation parameters

params [array] n*¥k, estimated coefficients

predy [array] n*1, predicted y values

S [array] n*n, hat matrix

R [array] n*n*k, partial hat matrices for each covariate

CCT [array] n*k, scaled variance-covariance matrix

w [array] n*1, final weight used for iteratively re-weighted least sqaures; default is None
Attributes

model [GWR Object] points to GWR object for which parameters have been estimated

params [array] n*k, parameter estimates

predy [array] n*1, predicted value of y

y [array] n*1, dependent variable

X [array] n*k, independent variable, including constant

family [family object] underlying probability model; provides distribution-specific calculations

n [integer] number of observations

k [integer] number of independent variables

df_model [integer] model degrees of freedom

df resid [integer] residual degrees of freedom

scale [float] sigma squared used for subsequent computations

w [array] n*1, final weights from iteratively re-weighted least sqaures routine

resid_response [array] n*1, residuals of the repsonse

resid_ss [scalar] residual sum of sqaures

W [array-like] list of n*n arrays, spatial weights matrices for weighting all observations from
each calibration point: one for each covariate (k)

2.2. MGWR Estimation and Inference 15

mgwr Documentation, Release 2.0.1

S [array] n*n, hat matrix

R [array] n*n*k, partial hat matrices for each covariate
CCT [array] n*k, scaled variance-covariance matrix
ENP [scalar] effective number of parameters

ENP_j [array-like] effective number of paramters, which depends on sigma?2, for each covariate
in the model

adj_alpha [array] Corrected alpha (critical) values to account for multiple testing during
hypothesis testing.

adj_alpha_3j [array] Corrected alpha (critical) values to account for multiple testing during
hypothesis testing.

tr_ S [float] trace of S (hat) matrix

tr_STS [float] trace of STS matrix

R2 [float] R-squared for the entire model (1- RSS/TSS)
aic [float] Akaike information criterion

aicc [float] corrected Akaike information criterion to account to account for model complexity
(smaller bandwidths)

bic [float] Bayesian information criterio

sigma2 [float] residual variance

std_res [array] standardized residuals

bse [array] standard errors of Betas

influ [array] Influence: leading diagonal of S Matrix

CooksD [array] n*1, Cook’s D

tvalues [array] Return the t-statistic for a given parameter estimate.

IIf [scalar] log-likelihood of the full model; see pysal.contrib.glm.family for damily-sepcific
log-likelihoods

mu [array] n*, flat one dimensional array of predicted mean response value from estimator

Methods
ENP() effective number of parameters
RSS() geographically weighted residual sum of squares
TSS() geographically weighted total sum of squares

adj_alphal)

Corrected alpha (critical) values to account for mul-
tiple testing during hypothesis testing.

adj_alpha_j0

Corrected alpha (critical) values to account for mul-
tiple testing during hypothesis testing.

bse()

standard errors of Betas

conf_int()

Returns the confidence interval of the fitted parame-
ters.

cooksD()

Influence: leading diagonal of S Matrix

cov_params(cov[, exog_scale])

Returns scaled covariance parameters

Continued on next page

16

Chapter 2. API reference

mgwr Documentation, Release 2.0.1

Table 6 — continued from previous page

critical_tval([alpha])

Utility function to derive the critial t-value based on
given alpha that are needed for hypothesis testing

filter_tvals([critical_t, alpha])

Utility function to set tvalues with an absolute value
smaller than the absolute value of the alpha (critical)
value to 0.

influ()

Influence: leading diagonal of S Matrix

localR2()

local R square

local_collinearity()

Computes several indicators of multicollinearity
within a geographically weighted design matrix, in-
cluding:

pDev() Local percentage of deviance accounted for.
sigma2() residual variance
spatial_variability(selector|, n_iters, Method to compute a Monte Carlo test of spatial
seed]) variability for each estimated coefficient surface.
std_res() standardized residuals

summary() Print out MGWR summary

tr_S() trace of S (hat) matrix

tr_STS() trace of STS matrix

tvalues() Return the t-statistic for a given parameter estimate.
use_t() bool(x) -> bool

y_bar() weighted mean of y

mgwr.gwr.MGWRResults

MGWRResults.critical_tval (alpha=None)
Utility function to derive the critial t-value based on given alpha that are needed for hypothesis testing

Parameters

alpha [scalar] critical value to determine which tvalues are associated with statistically sig-
nificant parameter estimates. Default to None in which case the adjusted alpha value at the
95 percent CI is automatically used.

Returns

critical [scalar] critical t-val based on alpha

mgwr.gwr.MGWRResults

MGWRResults.filter_ twvals (critical_t=None, alpha=None)
Utility function to set tvalues with an absolute value smaller than the absolute value of the alpha (critical)
value to 0. If critical_t is supplied than it is used directly to filter. If alpha is provided than the critical t
value will be derived and used to filter. If neither are critical_t nor alpha are provided, an adjusted alpha at
the 95 percent CI will automatically be used to define the critical t-value and used to filter. If both critical_t
and alpha are supplied then the alpha value will be ignored.

Parameters
critical [scalar] critical t-value to determine whether parameters are statistically significant

alpha [scalar] alpha value to determine which tvalues are associated with statistically sig-
nificant parameter estimates

Returns

2.2,

MGWR Estimation and Inference 17

mgwr Documentation, Release 2.0.1

filtered [array] n*k; new set of n tvalues for each of k variables where absolute tvalues less
than the absolute value of alpha have been set to 0.

mgwr.gwr.MGWRResults

MGWRResults.local_collinearity ()
Computes several indicators of multicollinearity within a geographically weighted design matrix, includ-
ing:

local condition number (n, 1) local variance-decomposition proportions (n, p)

Returns four arrays with the order and dimensions listed above where n is the number of locations used as
calibrations points and p is the nubmer of explanatory variables

mgwr.gwr.MGWRResults
MGWRResults.spatial variability (selector, n_iters=1000, seed=None)
Method to compute a Monte Carlo test of spatial variability for each estimated coefficient surface.
WARNING: This test is very computationally demanding!
Parameters

selector [sel_bw object] should be the sel_bw object used to select a bandwidth for the gwr
model that produced the surfaces that are being tested for spatial variation

n_iters [int] the number of Monte Carlo iterations to include for the tests of spatial variabil-
ity.

seed [int] optional parameter to select a custom seed to ensure stochastic results are replica-
ble. Default is none which automatically sets the seed to 5536

Returns

p values [list] a list of psuedo p-values that correspond to the model parameter surfaces.
Allows us to assess the probability of obtaining the observed spatial variation of a given
surface by random chance.

mgwr.gwr.MGWRResults

MGWRResults.summary ()
Print out MGWR summary

18 Chapter 2. API reference

mgwr Documentation, Release 2.0.1

D2

ENP_j

R2

adj_D2

aic

adj_pseudoR2

aicc

bic

deviance

df_model

df_resid

initialize

1If

IInull

normalized_cov_params

null

null_deviance

pearson_chi2

predictions

pseudoR2

pvalues

resid_anscombe

resid_deviance

resid_pearson

resid_response

resid_ss

resid_working

scale

__init__ (model, params, predy, S, CCT, R, w)
Initialize class

2.3 Utility Functions

2.3.1 Kernel Specification

mgwr.kernels. fix_gauss(coords, bw[, points,

)

Fixed Gaussian kernel.

mgwr.kernels.adapt_gauss(coords, nn[, ...]) Spatially adaptive Gaussian kernel.
mgwr.kernels.fix_ bisquare(coords, bw[, Fixed bisquare kernel.
)
mgwr.kernels.adapt_bisquare(coords, nn[, Spatially adaptive bisquare kernel.
..D
mgwr. kernels. fix_exp(coords, bw[, points,...]) Fixed exponential kernel.
mgwr.kernels.adapt_exp(coords, nn[, points, Spatially adaptive exponential kernel.

)

2.3. Utility Functions

19

mgwr Documentation, Release 2.0.1

mgwr.kernels.fix_gauss

mgwr.kernels.fix_gauss (coords, bw, points=None, dmat=None, sorted_dmat=None, spheri-

cal=False)
Fixed Gaussian kernel.

mgwr.kernels.adapt_gauss

mgwr.kernels.adapt_gauss (coords, nn, points=None, dmat=None, sorted_dmat=None, spheri-

cal=Fualse)
Spatially adaptive Gaussian kernel.

mgwr.kernels.fix_bisquare

mgwr.kernels.fix_bisquare (coords, bw, points=None, dmat=None, sorted_dmat=None, spheri-

cal=Fualse)
Fixed bisquare kernel.

mgwr.kernels.adapt_bisquare

mgwr.kernels.adapt_bisquare (coords, nn, points=None, dmat=None, sorted_dmat=None, spheri-

cal=False)
Spatially adaptive bisquare kernel.

mgwr.kernels.fix_exp

mgwr.kernels. fix_exp (coords, bw, points=None, dmat=None, sorted_dmat=None, spherical=False)

Fixed exponential kernel.

mgwr.kernels.adapt_exp

mgwr.kernels.adapt_exp (coords, nn, points=None, dmat=None, sorted_dmat=None, spheri-

cal=False)
Spatially adaptive exponential kernel.

2.3.2 Bandwidth Selection

mgwr.sel_bw.Sel_B(coords,y, X_loc[,...]) Select bandwidth for kernel

mgwr.sel_bw.Sel_BW

class mgwr.sel_bw.Sel_BW (coords, y, X _loc, X_glob=None, family=<spgim.family.Gaussian ob-

ject>, offset=None, kernel="bisquare’, fixed=False, multi=False, con-

stant=True, spherical=False)
Select bandwidth for kernel

Methods: p211 - p213, bandwidth selection Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geo-
graphically weighted regression: the analysis of spatially varying relationships.

Parameters

20

Chapter 2. API reference

mgwr Documentation, Release 2.0.1

y [array] n*1, dependent variable.

X_glob [array] n*k]1, fixed independent variable.

X _loc [array] n*k2, local independent variable, including constant.
coords [list of tuples] (x,y) of points used in bandwidth selection
family [string] GWR model type: ‘Gaussian’, ‘logistic, ‘Poisson’

offset [array] n*1, the offset variable at the ith location. For Poisson model this term is often
the size of the population at risk or the expected size of the outcome in spatial epidemiology
Default is None where Ni becomes 1.0 for all locations

kernel [string] kernel function: ‘gaussian’, ‘bisquare’, ‘exponetial’
fixed [boolean] True for fixed bandwidth and False for adaptive (NN)

multi [True for multiple (covaraite-specific) bandwidths] False for a traditional (same for all
covariates) bandwdith; defualt is False.

constant [boolean] True to include intercept (default) in model and False to exclude intercept.

spherical [boolean] True for shperical coordinates (long-lat), False for projected coordinates
(defalut).

Examples

>>> import libpysal as ps

>>> from mgwr.sel bw import Sel_BW

>>> data = ps.io.open(ps.examples.get_path('GDhata_utm.csv'))
>>> coords = list(zip(data.by_col('X'), data.by_col('Y")))

>>> y = np.array(data.by_col ('PctBach')) .reshape((-1,1))

>>> rural = np.array(data.by_col('PctRural')) .reshape((-1,1))

>>> pov = np.array(data.by_col ('PctPov')) .reshape((-1,1))

>>> african_amer = np.array(data.by_col ('PctBlack')) .reshape((-1,1))
>>> X = np.hstack([rural, pov, african_amer])

Golden section search AICc - adaptive bisquare

>>> bw = Sel_BW(coords, y, X).search(criterion='AICc")
>>> print (bw)
93.0

Golden section search AIC - adaptive Gaussian

>>> bw = Sel_BW(coords, y, X, kernel='gaussian').search(criterion="AIC")
>>> print (bw)
50.0

Golden section search BIC - adaptive Gaussian

>>> bw = Sel_BW(coords, y, X, kernel='gaussian').search(criterion='BIC'")
>>> print (bw)
62.0

Golden section search CV - adaptive Gaussian

2.3. Utility Functions 21

mgwr Documentation, Release 2.0.1

>>> print (bw)
68.0

>>> bw = Sel_BW(coords, y, X, kernel='gaussian') .search(criterion='CV")

Interval AICc - fixed bisquare

>>> sel = Sel_BW(coords, y, X, fixed=True)

—interval=2)
>>> print (bw)
211025.0

>>> bw = sel.search(search_method='interval', bw_min=211001.0, bw_max=211035.0,

Attributes

y [array] n*1, dependent variable.

X_glob [array] n*kl, fixed independent variable.

X_loc [array] n*k2, local independent variable, including constant.
coords [list of tuples] (x,y) of points used in bandwidth selection
family [string] GWR model type: ‘Gaussian’, ‘logistic, ‘Poisson’‘
kernel [string] type of kernel used and wether fixed or adaptive
fixed [boolean] True for fixed bandwidth and False for adaptive (NN)
criterion [string] bw selection criterion: ‘AICc’, ‘AIC’, ‘BIC’, ‘CV’
search_method [string] bw search method: ‘golden’, ‘interval’
bw_min [float] min value used in bandwidth search

bw_max [float] max value used in bandwidth search

interval [float] interval increment used in interval search

tol [float] tolerance used to determine convergence

max_iter [integer] max interations if no convergence to tol

multi [True for multiple (covaraite-specific) bandwidths] False for a traditional (same for all
covariates) bandwdith; defualt is False.

constant [boolean] True to include intercept (default) in model and False to exclude intercept.

offset [array] n*1, the offset variable at the ith location. For Poisson model this term is often
the size of the population at risk or the expected size of the outcome in spatial epidemiology
Default is None where Ni becomes 1.0 for all locations

dmat [array] n*n, distance matrix between calibration locations used to compute weight matrix

sorted_dmat [array] n*n, sorted distance matrix between calibration locations used to compute
weight matrix. Will be None for fixed bandwidths

spherical [boolean] True for shperical coordinates (long-lat), False for projected coordinates
(defalut).

search_params [dict] stores search arguments

int_score [boolan] True if adaptive bandwidth is being used and bandwdith selection should be
discrete. False if fixed bandwidth is being used and bandwidth does not have to be discrete.

22

Chapter 2. API reference

mgwr Documentation, Release 2.0.1

bw [scalar or array-like] Derived optimal bandwidth(s). Will be a scalar for GWR (multi=False)
and a list of scalars for MGWR (multi=True) with one bandwidth for each covariate.

S [array] n*n, hat matrix derived from the iterative backfitting algorthim for MGWR during
bandwidth selection

R [array] n*n*k, partial hat matrices derived from the iterative backfitting algoruthm for
MGWR during bandwidth selection. There is one n*n matrix for each of the k covariates.

params [array] n*k, calibrated parameter estimates for MGWR based on the iterative back-
fitting algorithm - computed and saved here to avoid having to do it again in the MGWR
object.

Methods

search([search_method, criterion, bw_min, ...]) Method to select one unique bandwidth for a gwr
model or a bandwidth vector for a mgwr model.

mgwr.sel_bw.Sel_BW

Sel_BW.search (search_method=’golden_section’, criterion="AICc’, bw_min=None,
bw_max=None, interval=0.0, tol=1e-06, max_iter=200, init_multi=None,
tol_multi=1e-05, rss_score=False, max_iter_multi=200, multi_bw_min=[None],

multi_bw_max=[None])
Method to select one unique bandwidth for a gwr model or a bandwidth vector for a mgwr model.

Parameters
criterion [string] bw selection criterion: ‘AICc’, ‘AIC’°, ‘BIC’, ‘CV’
search_method [string] bw search method: ‘golden’, ‘interval’
bw_min [float] min value used in bandwidth search
bw_max [float] max value used in bandwidth search

multi_bw_min [list] min values used for each covariate in mgwr bandwidth search. Must
be either a single value or have one value for each covariate including the intercept

multi_bw_max [list] max values used for each covariate in mgwr bandwidth search. Must
be either a single value or have one value for each covariate including the intercept

interval [float] interval increment used in interval search
tol [float] tolerance used to determine convergence
max_iter [integer] max iterations if no convergence to tol

init_multi [float] None (default) to initialize MGWR with a bandwidth derived from GWR.
Otherwise this option will choose the bandwidth to initialize MGWR with.

tol_multi [convergence tolerence for the multiple bandwidth] backfitting algorithm; a larger
tolerance may stop the algorith faster though it may result in a less optimal model

max_iter_multi [max iterations if no convergence to tol for multiple] bandwidth backfittign
algorithm

rss_score [True to use the residual sum of sqaures to evaluate] each iteration of the multiple
bandwidth backfitting routine and False to use a smooth function; default is False

Returns

2.3. Utility Functions 23

mgwr Documentation, Release 2.0.1

bw [scalar or array] optimal bandwidth value or values; returns scalar for multi=False and
array for multi=True; ordering of bandwidths matches the ordering of the covariates
(columns) of the designs matrix, X

__init__ (coords,y,X_loc, X_glob=None, family=<spglm.family.Gaussian object>, offset=None, ker-
nel="bisquare’, fixed=False, multi=False, constant=True, spherical=False)
Initialize self. See help(type(self)) for accurate signature.

2.3.3 Visualization

utils.shift_colormap(cmapl, start, ...]) Function to offset the “center” of a colormap.
utils.truncate_colormap(cmap[, minval,...]) Function to truncate a colormap by selecting a subset of
the original colormap’s values

utils.compare_surfaces(¥args, ¥*kwargs)

mgwr.utils.shift_colormap

mgwr.utils.shift_colormap (cmap, start=0, midpoint=0.5, stop=1.0, name="shiftedcmap’)
Function to offset the “center” of a colormap. Useful for data with a negative min and positive max and you
want the middle of the colormap’s dynamic range to be at zero

Parameters
cmap [The matplotlib colormap to be altered]

start [Offset from lowest point in the colormap’s range.] Defaults to 0.0 (no lower ofset).
Should be between 0.0 and midpoint.

midpoint [The new center of the colormap. Defaults to] 0.5 (no shift). Should be between 0.0
and 1.0. In general, this should be 1 - vmax/(vmax + abs(vmin)) For example if your data
range from -15.0 to +5.0 and you want the center of the colormap at 0.0, midpoint should
be setto 1 - 5/(5 + 15)) or 0.75

stop [Offset from highets point in the colormap’s range.] Defaults to 1.0 (no upper ofset).
Should be between midpoint and 1.0.

Returns

new_cmap [A new colormap that has been shifted.]

mgwr.utils.truncate_colormap
mgwr.utils.truncate_colormap (cmap, minval=0.0, maxval=1.0, n=100)
Function to truncate a colormap by selecting a subset of the original colormap’s values
Parameters
cmap [Mmatplotlib colormap to be altered]
minval [Minimum value of the original colormap to include in the truncated colormap]
maxval [Maximum value of the original colormap to include in the truncated colormap]

n [Number of intervals between the min and max values for the gradient of the truncated col-
ormap]

Returns

new_cmap [A new colormap that has been shifted.]

24 Chapter 2. API reference

mgwr Documentation, Release 2.0.1

mgwr.utils.compare_surfaces

mgwr.utils.compare_surfaces (*args, **kwargs)

2.3. Utility Functions

25

mgwr Documentation, Release 2.0.1

26 Chapter 2. API reference

CHAPTER 3

References

27

mgwr Documentation, Release 2.0.1

28 Chapter 3. References

Bibliography

[BKW80]

[BFC99]

[BFCO0S]

[dSF16]

[FB99]

[FBCO02]

[FO16]

[FYK17]

[HFCC10]

[NFBCO5]

D. A. Belsey, E. Kuh, and R. E. Welsch. Regression Diagnostics: Identifying Influential Data and Sources
of Collinearity. Wiley, New York, 1980.

Chris Brunsdon, A Stewart Fotheringham, and Martin Charlton. Some notes on parametric significance
tests for geographically weighted regression. Journal of Regional Science, 39(3):497-524, 1999.

Chris Brunsdon, A Stewart Fotheringham, and Martin Charlton. Geographically weighted regression: a
method for exploring spatial nonstationarity. Encyclopedia of Geographic Information Science, pages 558,
2008.

Alan Ricardo da Silva and A. Stewart Fotheringham. The multiple testing issue in geographically
weighted regression. Geographical Analysis, 48(3):233-247, 2016. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1111/gean.12084, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/gean.12084,
doi:10.1111/gean.12084.

A Stewart Fotheringham and Chris Brunsdon. Local forms of spatial analysis. Geographical Analysis,
31(4):340-358, 1999.

A. Stewart Fotheringham, Chris Brunsdon, and Martin Charlton. Geographically Weighted Regression:
The Analysis of Spatially Varying Relationships. John Wiley & Sons, February 2002. ISBN 978-0-470-
85525-6.

A. Stewart Fotheringham and Taylor M. Oshan. Geographically weighted regression and multicollinearity:
dispelling the myth. Journal of Geographical Systems, 18(4):303-329, 2016. URL: http://dx.doi.org/10.
1007/s10109-016-0239-5, doi:10.1007/s10109-016-0239-5.

A. Stewart Fotheringham, Wenbai Yang, and Wei Kang. Multiscale geographically weighted regres-
sion (mgwr). Annals of the American Association of Geographers, 107(6):1247-1265, 2017. URL: http:
/ldx.doi.org/10.1080/24694452.2017.1352480, arXiv:http://dx.doi.org/10.1080/24694452.2017.1352480,
doi:10.1080/24694452.2017.1352480.

P. Harris, A. S. Fotheringham, R. Crespo, and M. Charlton. The Use of Geographically Weighted Re-
gression for Spatial Prediction: An Evaluation of Models Using Simulated Data Sets. Mathematical Geo-
sciences, 42(6):657-680, June 2010. URL: http://link.springer.com/article/10.1007/s11004-010-9284-7,
doi:10.1007/s11004-010-9284-7.

T Nakaya, AS Fotheringham, Chris Brunsdon, and Martin Charlton. Geographically weighted poisson
regression for disease association mapping. Statistics in Medicine, 24(17):2695-2717, 2005.

29

https://onlinelibrary.wiley.com/doi/abs/10.1111/gean.12084
https://onlinelibrary.wiley.com/doi/abs/10.1111/gean.12084
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/gean.12084
https://doi.org/10.1111/gean.12084
http://dx.doi.org/10.1007/s10109-016-0239-5
http://dx.doi.org/10.1007/s10109-016-0239-5
https://doi.org/10.1007/s10109-016-0239-5
http://dx.doi.org/10.1080/24694452.2017.1352480
http://dx.doi.org/10.1080/24694452.2017.1352480
https://arxiv.org/abs/http://dx.doi.org/10.1080/24694452.2017.1352480
https://doi.org/10.1080/24694452.2017.1352480
http://link.springer.com/article/10.1007/s11004-010-9284-7
https://doi.org/10.1007/s11004-010-9284-7

mgwr Documentation, Release 2.0.1

[OF17]

[WheO07]

[YFL+18]

Taylor M. Oshan and A. Stewart Fotheringham. A Comparison of Spatially Varying Regression Coefficient
Estimates Using Geographically Weighted and Spatial-Filter-Based Techniques: A Comparison of Spa-
tially Varying Regression. Geographical Analysis, June 2017. URL: http://doi.wiley.com/10.1111/gean.
12133, doi:10.1111/gean.12133.

David C. Wheeler. Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted
Regression. Environment and Planning A, 39(10):2464-2481, October 2007. URL: http://epn.sagepub.
com/content/39/10/2464, doi:10.1068/a38325.

Hanchen Yu, Stewart Fotheringham, Ziqi Li, Taylor Oshan, Wei Kang, and Levi J Wolf. Inference in
multiscale geographically weighted regression. May 2018. URL: osf.io/4dksb, doi:10.31219/0sf.io/4dksb.

30

Bibliography

http://doi.wiley.com/10.1111/gean.12133
http://doi.wiley.com/10.1111/gean.12133
https://doi.org/10.1111/gean.12133
http://epn.sagepub.com/content/39/10/2464
http://epn.sagepub.com/content/39/10/2464
https://doi.org/10.1068/a38325
osf.io/4dksb
https://doi.org/10.31219/osf.io/4dksb

Index

Symbols

__init_ () (mgwrgwr.GWR method), 8
__init__ () (mgwrgwr.GWRResults method), 11
__init__ () (mgwrgwr.GWRResultsLite method), 12
__init__ () (mgwrgwrMGWR method), 15

_ init_ () (mgwrgwrMGWRResults method), 19
__init__ () (mgwrsel_bw.Sel_BW method), 24

A

adapt_bisquare () (in module mgwr.kernels), 20
adapt_exp () (in module mgwr.kernels), 20
adapt_gauss () (in module mgwr.kernels), 20

C

compare_surfaces () (in module mgwr.utils), 25
critical_tval() (mgwr.gwrMGWRResults
method), 17

F

filter_tvals () (mgwr.gwrMGWRResults method),
17

fit () (mgwr.gwr.GWR method), 8

fit () (mgwrgwrMGWR method), 14

fix_bisquare () (in module mgwr.kernels), 20

fix_exp () (in module mgwr.kernels), 20

fix_gauss () (in module mgwr.kernels), 20

G

GWR (class in mgwr.gwr), 5
GWRResults (class in mgwr.gwr), 9
GWRResultsLite (class in mgwr.gwr), 12

L

local_collinearity ()

method), 18

(mgwr.gwr.MGWRResults

M

MGWR (class in mgwr.gwr), 12
MGWRResults (class in mgwr.gwr), 15

P

predict () (mgwrgwr.GWR method), 8
predict () (mgwrgwrMGWR method), 15

S

search () (mgwr.sel_bw.Sel_BW method), 23
Sel_BW (class in mgwr.sel_bw), 20
shift_colormap () (in module mgwr.utils), 24
spatial_variability ()
(mgwr.gwrMGWRResults method), 18
summary () (mgwr.gwrMGWRResults method), 18

T

truncate_colormap () (in module mgwr.utils), 24

31

	Installation
	Installing released version
	Installing development version

	API reference
	GWR Model Estimation and Inference
	mgwr.gwr.GWR
	mgwr.gwr.GWRResults
	mgwr.gwr.GWRResultsLite

	MGWR Estimation and Inference
	mgwr.gwr.MGWR
	mgwr.gwr.MGWRResults

	Utility Functions
	Kernel Specification
	Bandwidth Selection
	Visualization

	References
	Bibliography

